548
8.7A . SPECTRAL MOMENT ESTIMATION IN MST RADARSA
R. F. Woodman

Instituto Geofisico del Peru
Aportado 3747
Lima, Peru

INTRODUCTION

Due to the random nature of turbulence, radar returns from turbulence-
induced fluctuations are stochastic processes and have to be characterized
statistically. The returns from any one height form a random time series which,
for the purpose of this work, we will consider quasi-stationary (stationary
within an integration time) and Gaussian. Both assumptions are fair and very
close to reality; ome can always adjust the integration time so that the first
" assumption is true; the second is a comsequence of the multiscattering nature of
the radar return.

A Gaussian and stationmary process is fully characterized by its auto-
correlation fumction, p(7), or equivalently by its Fourier transform, the
frequency power spectrum, F(w). Because of the Gaussian distribution of velo-
cities in the turbulent scatter volume, we know the shape of these functions:
they are also Gaussians, Thus, the processes we will be discussing are Gaussian
stationary processes with a Gaussian shaped power spectrum. The first qualifier
refers to the multivariant amplitude distribution of the signal proper and the
second to the distribution of the power at different frequencies, i.e., its
spectral shape. They should not be confused., The autocorrelation function has
also a (complex) Gaussian shape, since the Fourier transform of a Gaussian is
also Gaussian,

A Gaussian power spectrum has the form

$(w) = /-.% expl~Cw - ) 2/20%] o5
27W

It is fully defined by the value of three parameters: P, Q, W. They
correspond to the total power, the frequency shift and the spectral width,
respectively. They contain all the information we can obtain from the radar
echoes, and they are all we need to know to characterize the process, They are
a measure of three important physical properties of the medium: turbulence
intensity, meag radial velocity and velocity dispersion (turbulent velocity
variance, <u2> , under certain conditioms),

These three parameters correspond, also, to the three first moments of
S(w), defined as

P= [ s(w) do (2)
1

Q= E-fw S{w) dw (3

W= 2 [ (- 2% s du (4)

It is preferable to take (2), (3) and (4) as the definition of the three para-
meters of interest, P,  and W, since they are always well defined, even in the
case when there are deviations from our assumptions and expectatioms about the
nature of the process.
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The scope of the present paper is to review signal processing techniques
which have been used, or should be used, in MST radars, i.e., techniques which
lead to a good estimation of the three first moments of the spectrum.

The number of possible estimators for P, { and w? is unlimited. There-
fore, we can not be exhaustive. In order to reduce the scope of the paper to
bounds, we shall limit ourself to "good" estimators and to estimators that are
presently in use.

We would like to talk about "best" estimators, but we have a problem, since
there are two criteria for goodness one would like to satisfy: the estimator
should be good from an statistical point of view, i.e., the variances of the
estimated values should be as close to minimum as possible, but at the same time
they should be practical., These two criteria are usually not compatible. As
one improves the goodness of an estimator one increases the complexity of the
procedure. It is possible to talk about best estimators from an statistical
point, as we will see when we talk about the Maximum-Likelihood (M~L) estima-
tors, but they are very difficult if not impossible to implement. In general
one would like a procedure which one can use in real time, This requirement can
be very limiting, not so much because of the time scale of the processes, which
are relatively slow, but for the large number of parallel channels one has to
process. The demands are very large if ome is after the whole MST region with
high altitude resolutionm.

We can limit the scope of our paper, if we limit ourself to representative
techniques which have been actually implemented in MST radars. We shall do
this, but include also some discussion about M~L estimators since they give us
a limit in performance with which we can compare other techniques.

Recently ZRNIC'(1979) has reviewed the subject of spectral moment estima-
tion, Although the paper was motivated by weather radar applications and needs,
it is fully applicable for MST radars, We shall take advantage of this review,
avoiding repetition, unless we want to stress important conclusions, This
includes the references; the reader will find a very extensive list of refer-
ences in Zrnic's review.

In the next section we shall describe straightforward power spectrum
approaches, we shall then describe and discuss a correlation or covariance
approach and finally the M~L estimator concept and discuss the limits of
performance they define.

MOMENT ESTIMATORS VIA POWER SPECIRUM

The most straightforward estimators of the three parameters of interest is
suggested by their definition, through (2), (3) and (4). We should remember,
though, that we cannot obtain in practice S(w); we obtain instead
statistically estimated values of it, S'(w.) at a finite discrete number, N,
of points of frequencies. *

The definitions suggest the following estimators, P', i' and W', for P, @
and W:

N
P'= ] s'(u) (5)

i=1

W~z

Qr = l} w, 8€w,) (6)
P i i

1

&
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N
w2=1 7 (o -a?sW) )
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We need then, procedures, hopefully optimum, to find good estimated values of
the power spectra, This is a very old and genmeral problem for which there is
extensive literature, The reader is referred to the book by BLACKMAN and TUKEY
(1958) for an introduction, and to the section on spectral estimation in the
IEEE)book on signal processing for more modern approaches (RABINER and RADAR,
1976).

We would like to point out, that unless the sampling frequency, 1/T,, is
larger than the mean frequency plus a few spectral widths, 2I0(Q + 2W) , Q' and
W2 as given by (6) to (7) would be biased because of aliasing., This bias can
be reduced if we assume periodicity and calculate the moments centered around a
good guess of . Let w, be a good guess of the actual value of I, then we
evaluate a correction wy such that Q' = wj + Wes W is evaluated from

1 i=j+N/2
w_ =y ) (wi - w,) S'(wi) t:))
i=j-N/2

the spectral width is better estimated from

i=J+N/2
wo=d VR L ) s 9
P i=j—N/2 i k| € i

In practice the problem is complicated by the fact that the signal is con~
taminated with noise and echoes from efficient targets on the ground (ground
clutter). If we have an independent way of evaluating the noise power spectrum,
N(w), the algorithms presented in (5) to (9) are still valid provided we

replace 8'(w) by $"(w) - N, where S"(uw) is the power spectrum estimate
including noise., Here the noise spectra have been taken as constant independent
of frequency since usually the receiver bandwidth is much narrower than the

PRF, and there is no correlation between noise at two different sample

pulses. The noise level can be estimated from an altitude where there is
practically no signal, for instance from 45 km or from ionospheric altitudes,

or from a few pulses with the transmitter off., The last approach requires a
fraction, but fortunately small, of the observing time, since the noise level is
independent of altitude and one can use an average of the estimates from all the
different altitudes,

The presence of ground clutter presents a source of bias and an additional
problem. Different techniques have been used to cancel or minimize its effect.
Ground clutter signals have a spectral signature which consist essentially of a
single spectral line at the origin with a strength which depends on the ground
shielding of the radar. At tropo- and stratospheric heights, it is at least
comparable to the signal, and often many orders of magnitude larger. When the
clutter is strong enough, it presents, in addition, a component of the spectrum
with a spectral width comparable to the signal strength width, This results
from the slight propagation fading of the clutter. As in the case of noise, one
should subtract the contribution of this interference before evaluating the
moments. This contribution can be easily estimated in the case of nor~fading
clutter. The clutter adds a constant value to the signal, i.e., a spectral
line, and can be estimated by integrating the returns for as long as the
spectral estimation time {usually ome or two minutes). One can, then, subtract
the theoretical contribution of this constant component.
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The fading component is difficult to estimate independently. Omne way to
eliminate its biasing effect is to ignore the frequencies around zero (dc)
frequency. This is only possible when the signal is frequency shifted by a
magnitude larger than its width. This occurs frequently and presents diffi-
culties only when one is looking too close to vertical, or the medium velocity
is too slow (of the order of 1 m/sec or less). Another technique takes
advantage of the symmetry of the ground clutter compoment. It consists of
evaluating the antisymmetric component of the spectrum, replace the megative
powers by zero, and evaluate the moments of what is obtained (SATO and WOODMAN,
1982). This technique also has difficulties when the signal is too close to the
center or to the Nyquist frequency.

In using the spectral moment technique the observer has some freedom in
selecting the frequency spectrum estimating algorithm, the samwpling frequency
(or size of the spectral window) and the frequency resolution, This freedom has
direct implications on the processing speed.

As far as the estimating algorithm, most modern procedures use a Fast
Fourier Transform. This is an efficient way of doing it and should always be
pursued, unless one has a hardwired autocorrelator. One should always use
algorithms especially designed for 2" samples, and if possible, specially
designed for the particular exponent, n, selected. There can be considerable
savings in time this way.

As far as the sampling frequency and maximum (Nyquist) frequency are con-
cerned, the MST signals deserve some special considerations, The maximum duty
cycle and maximum range of interest permit, in MST radars, pulse repetition
frequencies which can be more than two orders of magnitude higher than the
maximum frequency content of the signals. This produces high redundance in the
sampling and calls for some signal filtering; not so much to increase the system
sengitivity —— as one sometime reads or hears -— as for reducing the information
input into the spectrum system and the amount of signal processing. As it is
well known, an FFT evaluation takes, N In N additions and computations. A
reduction, of let us say, a factor of 256 in the number of points, speeds up
processing by a factor of 2000,

The simplest and easiest filter to implement digitally is a boxcar inte-
grator (coherent integration). This simply integrates N number of samples from
a given altitude, takes the integrated value as a sample of the filtered output
and resets the integrator register to zerc, ready for the next integration. The
integration time should not be much larger nor shorter than half the period of
the expected maximum Doppler frequency shift plus the expected spectral width.
The integration time defines the sampling rate. Some undersampling and
consequent aliasing can be allowed, if (8) and (9) is used for the evaluation of
Q' and o; but, any oversampling is a waste of effort. ‘

Another processing parameter that the observer has some freedom to choose
is the frequency resolution. It is inversely proportiomal to the size of the
time span taken in evaluating the DFT or the time width of the weighting
function (Hanning window, etc.). The latter should not be much longer than the
correlation width, say 2 or 4 times the half correlation time, since this will
give us 4 or 8 points to sample the spectral functiom shape, more than enough to
determine the three parameters that defime it. Higher resolution increases the
processing effort without much gain in parameter accuracy.

In order to discuss the goodness of the spectral moment estimators we need
to know the variapces o<, o, o2 3f the estimated values with respect to their
expectations. gp;~ = g(p; ~ <P;>)“. This in general depends on the algorithm
used for the evaluation of 8'(y). We will quote here.the results obtained by
MILLER (1974).
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He gives us a simple expression for the variances for the case of a
Gaussian—shaped spectrum with no additive noise. The derivation was made
assuming a continuous time series weighted with a Gaussian window of width
T/2r. The variances, using our notation, are given by

2
2___ W (10)
e}
& o+ 2y
2
= e - an
© 16N[1 +(WT)“]

Usually WT > 1, since it is a good practice. Also we have that for a given
observation time T,, the number of DTFs is given approximately by T,/2T.
In terms of T, we can then write

GQ VTOW

Fos—5— 1 (12)
c YI W 3

Fw E_P-TJ—Q_ = s 13)

which are figures of merit, that serve to compare different techniques. They
normalize the variances with respect to the width of the spectra and include the
dependence on the square root of the number of degrees of freedom (number of
independent samples) which should be common to any estimator.

COne can improve on the estimators 5, 8 and 9 with additional effort.
Following a rule that one should not use data that carries no information, one
should use only those points in the spectrum, W;' for which there is a
significant value for S'(), especially when the signal is contaminated with
noise. This can be achieved with very little additional processing time, once
we have a reasonable estimate for the mean frequency and its width.

We can, in ¢ meral, say that the spectral moment approach provides good
estimators of the desired parameters. It involves the real-time evaluation of
DFTs for every altitude. This is a time-consuming operation, but fortunately
MST echoes are slow, specially at 50 MHz. With proper filtering (coheremnt inte-
gration) and the use of FFT processors, it should be possible to perform the
necessary operations in real time, even in the case of high resolution radars.
The processing system at the Arecibo radar, for instance, is capable of process-
ing in real time 32-point spectra, at 256 heights (WOODMAN, 1980). It is
actually capable of processing at least 4 times more information, being limited
at present by the memory capacity of an array processor. It should be pointed
out that the frequency of the Arecibo radar is 430 Miz, producing time series
close to ten times faster than a 50-MHz radar and, therefore, ten times more
demanding, The coherent integration is performed by a special purpose pre-
processor (a decoder). On the other hand, with the present state of the art,
real-time full-spectral processing of high~resolution radars is not possible
with a simple minicomputer. One needs the help of a special purpose coherent
integrator and an FFT processor.
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PARAMETER ESTIMATION BY NONLINEAR CURVE FITTING TECHNIQUES

The processing scheme described and discussed above implements the defining
equations (2), (3) and (4) and does not take advantage of the knowledge about
the spectral shape. There is a golden rule in detection theory that one should
make use of as much information as one has and ask only what one ignores,
Equation (1) suggests another technique for evaluating the moments, or more
properly — in this approach —— the parameters P, R and W2, We can ask for a
set of parameters such that S$(w) = S(w; P, Q, W) best approaches, in a least-
squares sense, the experimentally determined set {8'(w;)}, for all i's, This
is a standard parameter estimation problem. This approach is more time
demanding, but should produce better estimates of P, o and W, In fact we shall
see later that, with proper weighting, parameters obtained in this way are
maximum likelihood estimates for a given set of experimental estimates

{8'(w;)1.

The technique consists in minimizing an expression of the form

2. ? [s'(w,) - SCu,; B, 2, W12 (14)
€ _i=1Ai S wi wi’ s N0y

The problem is nonlinear in the unknowns, P, 2, W and involve special
techniques, The reader is referred to the text by BARD (1974) for a compre-
hensive treatment.

This approach has been taken by SATO and WOODMAN (1982) to process ST
spectra obtained with the 430 MHz. In fact, they used the technique to estimate
up to 8 additional parameters which define the noige, N, ground clutter inter-
ference, and if necessary, possible interference from strong turbulent layers
from lower altitudes which leak to higher altitudes through code sidelobes., The
technique includes instrumental and signal processing sources of distortion and
biases in the theoretical function, In this way, the parameters of interest are
evaluated free of all sources of biasing. Notice that an estimation of noise
level and clutter characteristics are obtained simultaneously with the signal
parameters, This approach involves first the estimation of S'(w), as in the
previous case. The parameter information is obtained at the cost of additiomal
processing.

Nonlinear automatic least square parameter estimation involves nontrivial
procedures. 1In the case of Arecibo, the additional processing is performed off
line (SATO and WOODMAN, 1982). This takes —- making use of a floating-point
array processor (AP-120) ~- a time equivalent to the time it took to obtain the
data. It is feasible to perform this additional processing in real time by
doubling the processing capacity. Although, for many applications, it would not
be necessary to perform the nonlinear estimation in real time.

THE AUTOCOVARIANCE OR AUTOCORRELATION APPROACH

One of the most efficient techniques from the point of view of processing
requirements is the single delay autocorrelation approach. In this approach
the signal power and the autocovariance at a single delay is evaluated through
the classical estimators

. ¥
P' = p'(o) = ﬁ Z }%.1%.* (15)
i=1
=5 e x (16)
"L' B e
P N-T 381 1 i
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where x; is the ith complex sample corresponding to a givenm altitude. The
mean frequency shift and the velocity spread Q' and W', are then obtained from

(1)
g = an
"1
W= 2 1 - lpv(rl)];(p(o) - Noise (18)
1

The technique takes advantage of the relationship that exists between the nth
derivation of the correlation function evaluated at the origin and the ath
moment of the frequency spectrum,

) The technique was first used in 1968 by WOODMAN and HAGFORS (1969) for
estimating the electromagnetic drift of ionospheric plasmas at Jicamarca, and it
was first used in 1972 by WOODMAN and GUILLEN (1974) for stratospheric and meso-~
spheric applications, The technique is in much use today by the weather radar
community, but, apparently, as a consequence of some independent work by RUMMLER
(1968) and by MILLER and ROCHWARGER (1972) and has been subjected to much
discussion and evaluation in the literature.

This technique involves only two complex multiplications and additions per
altitude sample, as compared to lnN in the case of spectral moment estimation
(where N is the number of spectral points). .The variance of this approach,
seemly surprising, is comparable to the one obtained by integrating the moments
of the frequency spectrum (RUMMLER, 1968; WOODMAN and HAGFORS, 1969). But, this
should not come as a surprise. After all, it is easily accepted that evaluating
the power via the average of the square of the magnitudes (equation 12) yields
the same value as the one evaluated by integrating the area of the frequency
spectrum (equation 5)., This is only a particular case, corresponding to the
zeroeth moment of a more general rule,

Woodman and Hagfors give us a simple expression for the variance of the
mean _angular frequency shift, valid for large Ns and small resultant values of
126_2(<<1 radians):

Q . :

2 _plo) -~ o2()

Q 2

%)
21N pZ(T)

(19)

It is interesting to compare the figure of merit of this approach as with
that of 12, For large S/N ratios and Gaussian-shaped autocorrelation functions,
18 takes its best values at small Ts.

%% = oN (20)

For a given observation time To, the number of (sufficiently) independent
estimates is N = T0 W. Hence,

¥ * 1172 (21)

comparable to the spectral moment approach.
Later on, when we consider the case of using autocorrelation values at

multiple delays, we shall see that the variances of the estimate using the
single delay technique is close to optimum only when the signal-to-noise ratio
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is high. This relative good performance deteriorates as the signal-to-noise
ratio goes down. But, it should be mentioned that the same happens with the
spectrum moment approach represented by equations (5), (6) and (7), but not of
the more sophisticated algorithm which includes weighting the spectral denmsity
by zero in the regions where there is no signal (match filter approach), or with
the parameter estimation technique we have previously discussed.

Another limitation of this technique is the difficulty in discriminating
against fading ground clutter or any other kind of interference., Fortunately,
in many MST installations, there is only nonfading clutter and white noise to
worry about, and the biasing effect they produce can be eliminated by
subtracting independent estimates of their contributions to p(o) and p(1).
These estimates can be obtained by the same methods described before for the
spectral moment approach,

Going from (3) and (4) to (17) and (18) involves approximating the
derivative of o(¢) by finite differences between p(o) and p(t). This presents
a bias which could become significant for relatively large 7ts (MILLER, 1972).
Fortunately, in the case of symmetric spectrum, equation (17) is an equality and
the bias disappears. This is important since optimum values of v, for noisy
signals, are not close to the origin.

We are reproducing here, two graphs (Figures 1 and 2) from MILLER (1972)
which depict the performance of the single delay, autocorrelation technique, by
plotting the standard deviation of the estimates for 2 and W as a function of
the sample separation T(Z h, in their notation).

From Figures 1 and 2 we can see that the best separation for 1 is that
around a characteristic width of the correlation function 1/W and that, for
noisy signals, the standard deviations of the estimates Q.' and W;' are
inversely proportional to the S/N ratio. Similar plots wére prodiuced by WOODMAN
and HAGFORS (1969) but for a typical incoherent-scatter autocorrelation function
shape,

It should be mentioned that the single delay autocorrelation approach, in
contrast to the frequency spectrum approach, is very sensitive to the pre-
filtering of the time series, Filtering of the signal in this case does improve
the signal-to-noise ratio and hence reduces the variance of the estimates. As
it is to be expected, optimum results are obtained using a matched filter,
matched to the shape of the signal spectrum. But, a boxcar integator (coherent
integration) produces similar results and it is much easier to implement., It
should be kept in mind, in any case, that filtering could be a source of Q and
W biasing. This bias can be computed theoretically and should be corrected.

COVARIANCE APPROACH AT MULTIPLE DELAYS

If the covariance approach was so efficient at a single delay, it is
natural to ask how much improvement can be obtained using more than one delay,
T, Let Q; and o; be estimates of Q and ¢, obtained on the basis of equations
(17) and %18) for different values 1, of . We can always obtain a new
estimate Qa, LA through *

M
9= 1 C 9 (22)
i=1
M
W= ) C.W, (23)
a 33



556

0.1 L — I U T IO B
o 03 .05 07 O 3 - T S ¥ <] 3 3

x £2¥bh

Figure 1. Normalized standard deviation of mean-~frequency
estimator versus pulse-pair spacing,

where C; and C. are weights properly selected to minimize the variances of {,
and W,, and notmalized such that IC; = ZC; = 1, WOODMAN (1975) has treated the
problem for §he frequency shift Q_., He found an optimum set of values Cji, such
that <@, - 27> is a minimum and discussed numerically the effect of averaging
for different signal-to-noise ratios, sampling spacing, number of points M and
correlation function shapes. Figure 3 depicts the optimum set of weights for
two S/N ratios, for a Gaussian-shaped autocorrelation function sampled at 32
points with a spacing of 0.1 (of the typical width). The set for low signal-to-
noise is as expected; it corresponds to the normalized inverse of the variances
of Q. a well~known result for optimum averaging of independent samples. The
resuitant set for high S/N ratio is somewhat surprising; it has negative as well
as positive signs, with absolute values which are larger than wity. This is a
consequence of the fact that the difference estimates are not independent of one
another,

Figure 4, shows the variance of 2, as a function of the coordinate of the
last sample (in typical width units). There are two groups corresponding to
different S/N ratios. 1In each group there are 6 curves corresponding to 1, 2,

4 ... 32 samples, The first conclusion we can draw from these results is that,

indeed, for high signal-to-noise ratios there is not much difference between the
variance with 32 points at optimum delay and a single point close to the origin.
There is a 60% difference (30% for the standard deviation) in going from 1 to 2
points, and an additiomal 50% (25% for the sd) in going from 2 to 32, This

last improvement, is certainly not worth the effort. The increase from 1 to 2
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Figure 2, Normalized standard deviation of the estimate of
'frequency spread versus pulse-pair spacing.

could be justified if the redundancy is used to check the existence of
unexpected interference.

On the other hand, we see that, for high S/N ratios, the variance is
roughly inversely proportional to the number of sample points. This is not
surprising since the estimates {Q } have statistically independent erroxrs with
respect to the real Q.

We can conclude then that {, as defined in (17), is a good estimator from
a statistical as well as from a practical point of view when the S/N is better
than one, but it is far from optimum when the signal-to-noise ratio is low.

Notice that the above discussion assumes that the sampling in the time
series is such that the spacing for 32 points is optimum, i.e., that approxi-
mately 32 or N points can be fit in approximately a correlation time. Other-
wise, a gain proportional to the number of samples cannot be achieved. Cor-
relation samples which fall at points where the correlation is low do not con~
tribute to improve the accuracy of the estimate.

It should be mentioned that the deterioration of the single delay
covariance approach should not be held as an argument in favour of the sampled
spectral moment approach, Unless some more sophisticated processing is per—
formed with the spectra, the single delay autocorrelat1on approach yields the
same performance as the straight spectral moment approach, including the case of
noise signals, as it was quoted before (RUMMLER, 1968).
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Similar computations have not been performed for the variance of the
spectral width estimate, but we can expect that, qualitatively at least, the
same conclusions will hold. .

MAXIMUM LIKELIHOOD ESTIMATORS AND BOUNDS

Given a set or sequence (random process) of N observables x, with an N
joint probability function F(X;{A}) such that F(X;{A}) = g(1§§<§+dn§/{A}) where
{A}is a set of parameters. If is possible to fiid practically 3n ifnumerable
number of estimators of {A} and estimates of {A.} as a function of the
observables. For these estimates to be of prac%ical use they must meet the
condition that <A;'> = A, and that the variances oaz = <(Ai' - A.)%> be small.
For a given sample x of the process, we can form a function F(g;%A}) and let
{A} vary. There will be a value of {A} for which F(%;{A}) is a maximum in {A}
space. This value is called the maximum likelihood estimate of {A}. It can be
shown that such an estimate produces minimum variance among all possible
estimators (CRAMER, 1946).

Usually it is not possible to find explicit solutions or practical
algorithms for the ML etimators, on the other hand, the theory gives us formal
expression for the ML variances, which can be used to compare the "efficiency"
of a given estimator. It is possible, in the case of large N processes with a
Gaugsian-shaped spectrum plus white noise, and using justifiable approximations,
to obtain explicit expressions for these bounds. Zrnic, for instance, using a
ML approach, finds the following lower bounds.

, v /am?
s
o, = - 2 (24)
w1 - qur_/2myA¥
when the noise level is zero, and
2 Wz 2
o, > 4/m (WI_/27) (N/S) (25)

when the S/N << 1 and WTg/27<<l. He assumes a continuous sequence of N
complex, samples spaced by Tg.

We should state, though, that we find equation (24) disturbing, since for a
given observation time T, = T, M, we can make the variance arbitrarily small by
making T as small as possible, This is contrary to our expectatioms, since,
for a given W and no noise, sampling times smaller than W-! gives redundant
information, and should not improve the variance of any estimator. There is no
explicit indication on the reference for the expression not to be valid for
small WIg.

If the sequence of observables {x.} is given by M pairs of independent
complex values (x 10X i) but correlated in between. The ML estimator can be
found explicitly for %arge Ns (MILLER, 1972). It turns out to be the same as
the covariance approach heuristically described by RUMMLER (1968) and WOODMAN
and HAGFORS (1969) and discussed previously.

It is also possible to use an M~L approach starting with sample estimates
of, o'(14) or S'(wi), of either the autocovariance fumction, p(t), or the
spectrum S(w), as the set of random variables to be used in an M-L estimate of
the parameters P, 2, W and N, we are interested in. The procedure, then,
starts with the set of observables {x.}, from which we obtained an estimate,
p'(t;) or 8'(w;), of p(r,) or S(w.), using any of the available algorithms.
These estimates, which hopefully ontains all the desired information about the
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process, are then used in an M~L approach to obtain the desired parameters.
LEVINE (1965) has taken this approach starting with an estimate S(w) of the
frequency spectrum. We refer the reader to the original reference, or to
Zrnic's review for the solution algorithm. There is no explicit formula for the

estimates. They involve the solution of some nonlinear simultaneous equations.
The lower bounds for the variances are given by

o 2> E 2 (225 - 3% (ur 32 4 180 (g 34y (26)
% i W (my2 s (amy% s
2
2. 3 W 2
9 2 :?'iz'(WT ) 21
2
02> 45 W- (w-r)“ (28)
W ir A M

These bounds are valid for large signal~to-noise ratios.

We should notice that (27) gives about the same lower bounds as (24), which
means that, at least for the frequency shift variance, this approach can be as
good as the M-L approach which starts with the observational time series x5
In terms of our figures of merit we can write

r_ =73 (yp )32
o 8

q (29)

F_ = /&5 L (ut )? (30)
W 2“2 s

We can see that for sampling times comparable to a correlation time, i.e.,
for WT ~ ], The performance of the spectrum and the signal delay frequency
shift estlmators is comparable to both M~L estimators. According to (29) and
(30) both estimators improve as we reduce the sampling time spacings eventually
becoming much better than the simple estimators we have mentioned, Again, we
find this behavior in the limit -~ as T_ » 0 -- disturbing, since (high
sampling) rates redundant should eventually produce oversampling, which should
not decrease the variance of our estimates, Figure 3, for instance, despite its

sophistication, definitely does not show this improvement; it shows instead some
leveling off, as we expect.

The corresponding variances for the case of small S/N ratios are:

2
s 2= )L 31)
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The corresponding figure of merit for the first moment is:

=2 s 4
F - (WTS) (S), (34)
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which behaves in the same way as far as its dependence on T and &), as the
multiple delay autocovariance approach we have discussed previously (Figure 2).

We have mentioned before, that parameter estimation by a least square
fitting of the theoretical shape of the spectrum is an M~L technique. It is
indeed an M-L estimator which starts with the frequency spectrum estimates
s(wi) = s; as the original set of random variables. Let F(ﬁ;{P_}) be the
multivariance distribution function, where § is the set of spec%ral values
S(wy) = 8; in vector form. If s(w;) is obtained by averaging a sufficiently
large number M, of DFTs of weighted sections of the original time series,
F(8, {P;}) is a Gaussian joint probability distribution function and the
logarithm of the likelihood function is given by

L({Pi};si) = ~1n |Qrl - .z (s, - 8)) (Qij).—l (sj - Sj) + const.
i,j

where §; = § (m.;{Pk}) is a known function of the unknown parameters P.., We
shall consider the covariance matrix Q known., Maximizing the 1ikelihogd
function L is equivalent to minimizing the quadratic expression, namely to solve
the set

2 (s, -8) (@, Xs,-5) =0 for all ks (35)
9P, &, i i ij j j
k 1,3
It is known that, if the size of the time window in the DFT is large
with respect to the correlation time, the variances of (S8; - s;) are in-
dependent, and Q. is diagonal with elements ¢ .3 The problem is then reduced
to solve the set sid

3 2 1 _
FZ (s; - 5,({p_1)) 2" 0 for all ks (36)
k 1 ii
But this is exactly the starting point ofza least squared estimation
technique provided that each element (s; - S;)“ in the quadratic expression is
weighted by the inverse of their expected variance.

Note that the set of parameters is not limited to P, w, W. The parameter
estimation procedure used for the Arecibo ST data, (SATO and WOODMAN, 1982),
for instance, fits up to eleven parameters.

CONCLUSIONS

The single delay autocorrelation approach is a very simple and statistical
efficient estimator for MST radars and should be used for real-time processing
of MST radar signals, whenever the complexity and cost of the installation is to
be kept low. A coherent integrator is indispensable, since this reduces the
processing capacity requirements and improves the (S/N) and final estimated
variances, Nonfading clutter and noise should be estimated concurrently and
accounted for., The technique does not allow for correcting other sources of
interference.

If the complexity of the installation allows for the inclusion of an FFT
processor, the full spectrum or correlation function should be evaluated and the
parameters evaluated using existing sophisticated algorithms, Parameters can be
evaluated in this way with much improvement over the single delay correlation
technique specially under conditions of low S/N ratio and existence of sources
of interference like fading ground, ocean or self clutter, Normally only the
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estimation of the spectrum or correlation needs to be evaluated ir real time.
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